
TreeOS Coding Conventions of TreeOS Rev.02

BeiJing Guanglun Electronic Technology Co., LTD. www.treeos.com

Coding Conventions of TreeOS

2017-07

Preface:

The specification of programming can make the program more concise, neat, easy to read、
understand and transplant that improve the portability, compatibility, easy maintenance, etc.,
improving the programming efficiency.

Of course, if there are too many rules to remember, it is a burden to the programmer.So make
the specification as lean as possible we need to grab the key.

The code for programming runs throughout.TreeOS is open source software, and software that
changes or extends it must also comply with the same programming specifications.

Below are the programming specifications for the TreeOS ComLib.

Ⅰ Basic principle

 all code must adopt the ANSI C standard

 strictly abide by the programming norms
 as far as possible, use simple grammar

 avoid complex statements
 do not use obscure expression
 do not use GOTO statements

 modify code, need to update related documents

Ⅱ Source code file

We have a certain function of source code files (such as a device driver) is called a module, it
includes two files: executable file (. C) and header files (.h files).

Layout of the execution file:

 head of file
 include file (# include)

 global macros (Global macro definition)
Includes: conditional compilation selection, attribute (constant definition), IO pin definition,

special statement.

 external declaration for global variable
 function declarations (the first part is the local function prototype,the last part is the global

function prototype)
note: header files must make the pledge that we shall avoid repetition defines a numeric value

in the include file .

Ⅲ File header

The file header is a annotate block placed on the head of the source code file, which includes
copyright, company information, programmer, and the description information for text, software
version and the history of revision, etc.

When every time the software is modified,a corresponding revision record should be made.
For example:

/**************** (C) COPYRIGHT 2012 BeiJing Guanglun Electronic
Technology Co., LTD.******************/

The copyright of this software is owned by Beijing Guanglun Electronic Technology co., LTD.
All the programs offered by this software are for the purpose of learning and understanding the

TreeOS operating system.
If you put the software on youself reference to your product, any adverse consequences

caused by the software directly or indirectly after running, the software copyright owner will not do
any compensation , also does not assume any legal liability.

The ultimate resolution of the software 、copyright and parsing right is owned by the software
author.

For details, please visit http://www.treeos.com.

If you have any questions or Suggestions, please email us at support@ treeos.com .

For the latest technical progress, please pay attention to WeChat public's "Guanglun

http://www.treeos.com/

TreeOS Coding Conventions of TreeOS Rev.02

BeiJing Guanglun Electronic Technology Co., LTD. www.treeos.com

Electronic" or "TreeOS", a taobao store.

Name for File：TreeOS_main.h

TreeOS: this software is applicable to the real-time operating system of TreeOS.

Configuration: default configuration for TreeOS Kepler11 development board.

Version: belonging to the ComLib A2 component library, 2014

Function:

* treeos_main.c a configuration file

Revision record:

1. Completion date: 2014-10-1;By TreeOS Mrs Lin

**/
Iv The document contains

TreeOS requires that C files for each module must be equipped with a header file of the same
name.

Module C file can list the header file only, you can also use a header file named TreeOS_inc. h
including all files, although convenient (all module contain TreeOS_inc.h only), but can make the
compilation time longer, and as TreeOS ComLib constantly expanding, the TreeOS_inc.h also need
configuration based on the requirements.In addition, if the module contains header files required
only, it can be intuitively seen that the module is coupled to other modules.

Such as:

#include<reg52.h> //M/

#include "TreeOS_main.h"

#include "TreeOS_mcu.h"

#include "TreeOS_int.h"

#include "TreeOS_hc574.h"

#include "TreeOS_hd61202.h"

#include "TreeOS_lcd_disp.h"

#include "TreeOS_I2C.h"

#include "TreeOS_24Cxx.h"

#include "TreeOS_pcf8563.h"

#include "TreeOS_RS232.h"

#include "TreeOS_beep.h"

#include "TreeOS_keyboard.h"

Ⅴ Function declaration

All the defined functions in the module are declared in the header file.
There are two parts, the first part is the local function prototype, the latter part is the global

function prototype.
You need to call a function defined in another module, and you must include the header file of

that module.

VI comments

The comment is written behind the statement and is gused / / enerally .
It's so long that write in multiple lines.The reason for the use / / is that writing is simple, and

the second is that it is sometimes convenient to use/* */ to comment out a program (more intuitive
than using #if and #endif).

Of course, you don't reject the use of annotations/*..*/, but the same annotation style is
required for the same module (corresponding.c and.h files).

TreeOS Coding Conventions of TreeOS Rev.02

BeiJing Guanglun Electronic Technology Co., LTD. www.treeos.com

Ⅶ Indent format

Remember that the "{}" the function is near the left edge, and the statement is indented four
Spaces relative to the left side of the column.

For a statement such as if, for, while, switch, its statement block “{”and“}”are not
indented, and one row is placed separately, and the pair is in the same column.This makes it easy
to distinguish between numerous {}.The statement inside {} is indented and the {} is exposed.
Such as:

if ((t - t0) > 500) //500ms timekeeping

{

t0 = t;

for (i = 0; i < 5; i++)

{

 dsplay_chinese(hao+i*32, 0);

} //for
} //if

For case statements, indent 4 Spaces exposing the case .

Such as：

case UP:

if (item)

{

……

}

break;

case DOWN:

if (item < 5)

{

……

}

break;

……

Ⅷ Naming rules

 macro definition
The macro definition is written in uppercase, dividing the words with an underline.Special

circumstances allow the use of a lowercase letter and only the front, mainly to avoid conflict with
other imported programs.

A macro defines a prefix (beginning) as part of the file name of the file in which it resides.
Such as:

#define UART_BUFFER_SIZE_SEND 20 //M/ send buffer bytes.
Note: a space between #define and macro name is ok.
 the variable name and function name
Try to as clearly as to make sense of it.There are two ways of naming it: one is Capitalizing the

first letter of the word, so as to separate different words;The second is that all the words are in
lower case and the middle is separated by an underline"_".Both methods are available, and the
second method, though much more "_", is more conducive to reading.

The variable name and the function name are prefixed as part of the filename of the file.

TreeOS Coding Conventions of TreeOS Rev.02

BeiJing Guanglun Electronic Technology Co., LTD. www.treeos.com

Such as:

ui8 UartSendPrt = 0;

void lcd_init(void)。

Ⅸ Data type

To make it more efficient for all kinds of processor IDE and writing, TreeOS defines all data
types with typedef, which are put in a dedicated header file, treeos_typedef.h.

Some platforms char are equivalent to signed char, others are equivalent to unsigned char,
and for this purpose, you should explicitly use signed char or unsigned char in your code.

You can't use an int directly than using short and long.
Such as:

typedef signed long i32;

typedef signed short i16;

typedef signed char i8;

typedef code signed long i32c; //code data,read only

typedef code signed short i16c; //code data,read only

typedef code signed char i8c; //code data,read only

 typedef unsigned long

ui32; typedef unsigned short

ui16; typedef unsigned char

ui8;

typedef code unsigned long ui32c; //code data,read only

typedef code unsigned short ui16c; //code data,read only

typedef code unsigned char ui8c; //code data,read only

ⅩStatements and expressions

 each line only put a statement;
 Such as:

if（a < b）
return 1;

else

return 0;
 add a blank lbetween blocks;

 each commas or semicolons should have one space;
For example: ui8 send_data_24Cxx (ui16 SubAdr, ui8 ByteCnt ui8 * p)

for (i = 0; i < 100; i++)

Note: the parentheses after the function name cannot have a blank ;Do not have blank
between the () and the characters in parentheses.

 one yuan can not contain Spaces between operators and operands;

 For example：!a, ~b, i++, i--, *p, &x, (ui16)y etc.

 between binary and multiple operators or operands should have at least one space;

 For example：a + b; a = b; a | b; a > b; a >= b; etc.

some keywords to follow behind a space character

For example：for (i = 0; i < 100; i++)，if (a > b)，else {… }，switch (a)，return (a) etc.

Ⅺ Structure and common body

The structure type is represented in capital letters (with 1 lower case), and the rules are
defined by the macro.

TreeOS Coding Conventions of TreeOS Rev.02

BeiJing Guanglun Electronic Technology Co., LTD. www.treeos.com

Such as:

typedef struct //define hh:mm

{

ui8 hour; //0~23

ui8 min; //0~59

} tHHMM;

Ⅻ Function configuration

TreeOS is a configurable, tailored, componised operating system.
For specific applications, you need to configure the capabilities (in.h files), and even modify some
of the software (in.c files).
All of these need to be modified with "//M/" (M means Modify) to remind users that they may
need to be modified here.
Such as:

#define UART_BUFFER_SIZE_SEND 20 //M/ Send buffer bytes.
//M/Alert to modify the size of the serial port to send the buffer.
Too small to fit, too big to waste memory.

